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Abstract: The first total synthesis of the carbazole quinol alkaloids carbazomycin 

G and H has been achieved by a highly convergent synthesis using an iron-mediated 

construction of the carbazole nucleus as key-step. @ 1997 Elsevier Science Ltd. 

The carbazomycins A to H were isolated by Nakamura and co-workers from Streptoverticillium ehimense.2 

Because of their useful biological activities and the unusual substitution pattern the carbazomycins became 

attractive synthetic targets for several groups. 3,4 We developed a convergent synthesis for highly substituted 

carbazole alkaloids which furnishes the heterocyclic framework by a consecutive iron-mediated C-C and C-N 

bond formation.5,6 This method was applied to the total synthesis of carbazomycin A7,* B,* C9 D,9 and E.10 

In this paper we report the first total synthesis of the carbazomycins G and H, which are structurally unique due 

to their quinol substructure.@ Retrosynthetic analysis of these alkaloids suggests the carbazoles 1 as synthetic 

precursors, which based on the iron-mediated synthesis on the carbazole ring system, should derive from the 

iron complex salts 2 and the a&mine 3 (Scheme 1). 

Carbazomycin G R = H 

Carbazomycin H R = OMe 

Scheme 1 

la R=H 2a R=H,X=BF4 3 

lb R=OMe 2b R=OMe,X=PFe 

The required arylamine 3 was readily prepared starting with commercial 2,6-dimethoxytoluene 4 (Scheme 2). 

Titanium tetrachloride promoted Friedel-Crafts acylation I1 afforded the acetophenone 5 which was 

transformed into the acetate 6 by a proton-catalyzed Baeyer-Villiger oxidation. Nitration of 6 with turning 

nitric acid in a mixture of acetic anhydride and glacial acetic acid (3: 1) provided regioselectively the nitro 

derivative 7. Finally, ester cleavage to the phenol 8 and hydrogenation at palladium on activated carbon gave 

the required arylamine 3.12 The sequence depicted in Scheme 2 provides compound 3 in five steps and 69% 

overall yield on a multigram scale. 
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Scheme 2 

Reaction of the iron complex salts 2a and 2b13 with the arylamine 3 afforded the iron complexes 9a and 9b 
(Scheme 3). Subsequent O-acetylation provided the acetates 10a and lob which represent the synthetic 

precursors of carbazomycin G and H respectively. It was shown earlier that hydroxyanilines provide high yields 

in the electrophilic aromatic substitution with tricarbonyliron-complexed cyclohexadienylium cations, but that 

the free hydroxy groups have to be protected prior to oxidative cyclization with manganese dioxide.s.14 

The iron-mediated arylamine cyclization of complex 10a with very active manganese dioxide’s provided the 

carbazole la in 72% yield. Oxidation of la with ceric ammonium nitrate I6 afforded the carbazolequinone lla, 

which by addition of methyl lithium gave carbazomycin G (Scheme 4). 
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To complete the total synthesis of carbazomycin H, the iron complex 10b containing a 3-methoxy-substituted 

cyclohexadiene ligand has to be cycliied regioselectively. Previous studies using deuterium-labelled cyclohexa- 

diene ligands have demonstrated that cyclizations by two-electron oxidants, such as manganese dioxide, initially 

give rise to the product resulting from exclusive attack at C-4 of the cyclohexadiene ligand.16 In the present 
case this regiochemistry is represented by the 8-methoxy-substituted carbazole lc, the undesired regioisomer. 

However, a subsequent proton-catalyzed rearrangement of the kinetic product to a 6-methoxy-substituted 

carbazole derivative may occur at the stage of the tricarbonyliron-complexed dihydrocarbazole.9.17 The driving 
force behind this isomerization is the well-established regio-directing effect I* of the 2-methoxy substituent of 

the intermediate iron-complexed cyclohexadienyl cation, which directs the amino group to the 5-position of the 

ligand. Dehydrogenation by manganese dioxide of the thermodynamic product, the 6-methoxy-substituted 

tricarbonyliron-complexed 4a,9a-dihydrocarbazole, provides the desired isomer lb.19 Obviously, the proton- 

catalyzed rearrangement can compete with the dehydrogenation to lc at the stage of the kinetic product, as 
deduced from the 2 : 1 ratio of lb and lc (Scheme 3). Oxidation of lb with ceric ammonium nitrate to lib 

followed by addition of methyl lithium afforded carbazomycin H (Scheme 4). 
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MeLi, THF ~ 
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lla R=H (95%) 

lib R=OMe (54%) 

Carbaromycin G R = H (71%) 

Carbazomycin H R = OMe (41%) 

Scheme 4 

The present synthesis provides carbazomycin G and H in five steps based on the iron complex salts 2a and 2b 
respectively (overall yield for carbazomycin G: 46%, and for carbazomycin H: 7%). The spectral data (UV, IR, 

IH-NIv& 13C-NMR) of our synthetic carbazomycins G and H (G: m.p. 266-268°C dec.; H: m.p. 208-209°C 

dec.) are in good agreement with those reported by Nakamura and co-workers for the natural products 
(carbazomycin G: m.p. 241-243’C; carbazomycin H: m.p. 228-230°C).28 
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